ORGANOMETALLICS

Communication

Diphosphazide-Supported Trialkyl Thorium(IV) Complex

Tara K. K. Dickie, Ashraf A. Aborawi, and Paul G. Hayes*

 Cite This: Organometallics 2020, 39, 2047–2052
 Read Online

 ACCESS
 Image: Metrics & More
 Image: Article Recommendations
 Image: Supporting Information

ABSTRACT: The potassium salt of a new ligand, $KL_{P=N3}$ (2, $L_{P=N3} = \kappa^{5}$ -2,5-[(4-ⁱPrC₆H₄)N₃=PⁱPr₂]₂N(C₄H₂)⁻), that features two units of the rare phosphazide (RN₃=PR₃) functionality was synthesized via an incomplete Staudinger reaction between K[2,5-(ⁱPr₂P)₂N(C₄H₂)] (1) and 4-ⁱPrC₆H₄N₃. The diphosphazide ligand was transferred to a thorium(IV) metal center using salt metathesis strategies, yielding $L_{P=N3}$ ThCl₃ (3), which contains two intact and coordinated phosphazides. Reaction of complex 3 with 3 equiv of LiCH₂SiMe₃ resulted in formation of the trialkyl thorium species $L_{P=N3}$ Th(CH₂SiMe₃)₃ (4). In contrast, attempts to synthesize an organothorium complex supported by the previously reported bisphosphinimine ligand $L_{P=N}$ ($L_{P=N} = \kappa^3$ -2,5-[(4-ⁱPrC₆H₄)N=PⁱPr₂]₂N(C₄H₂)⁻) afforded the cyclometalated dialkyl complex L*_{P=N}Th(CH₂SiMe₃)₂ (6, L*_{P=N} = κ^4 -2-[(4-ⁱPrC₆H₄) of free tetramethylsilane.

dialkyl complex $L^*_{P=N}$ Th(CH₂SiMe₃)₂ (**6**, $L^*_{P=N} = \kappa^4$ -2-[(4-^{*i*}PrC₆H₃)N=P^{*i*}Pr₂]-5-[(4-^{*i*}PrC₆H₄)N=P^{*i*}Pr₂]N(C₄H₂)²⁻) and 1 equiv of free tetramethylsilane.

T he Staudinger reaction, discovered in 1919,¹ introduced the formation of a phosphinimine group $(R_3P=NR')$ via the reaction of a tertiary phosphine (R_3P) with an organic azide (N_3R') , resulting in concomitant loss of N_2 . Since its discovery, the phosphinimine functionality has been extensively utilized in coordination chemistry, largely due to the ease by which the steric and electronic properties can be fine-tuned by varying the phosphine² and/or azide³ reactants. Notably, phosphinimines have been useful for supporting early transition metal olefin polymerization⁴ and rare earth metal ring-opening polymerization catalysts.⁵

The Staudinger reaction proceeds via an intermediate phosphazide (R_3PNNNR') (Scheme 1).⁶ Until recently, such phosphazides were largely considered transient species, due to

Scheme 1. Phosphinimine Formation and Methods of Phosphazide Stabilization

the facile loss of $N_{2\prime}$ and, accordingly, were overlooked as viable functional groups in ligand design. Since Staudinger's original work, multiple methods have been developed to stabilize phosphazides and inhibit N_2 loss, including the use of tertiary phosphines and azides with bulky R groups, 7 H-bonding, 8 and the coordination of phosphazides to rare-earth 9a and transition metals. 6,9b,c,10

It was recently demonstrated that phosphazide coordination to an alkali metal permits isolation of a "phosphazidosalen" ligand system.¹¹ Such alkali-metal-stabilized phosphazides proved sufficiently stable for transfer to uranium via a simple salt metathesis protocol. More specifically, the dipotassium salt of the phosphazidosalen ligand K_2L'' [$L'' = \kappa^6$ -1,2-{(N_3)-PPh₂(2-O-C₆H₄)}₂C₆H₄] reacted with UCl₄ to afford the first example of an actinide-stabilized phosphazide, L''UCl₂. In the solid-state structure of L''UCl₂, both phosphazide functionalities were coordinated to uranium; consecutive N₂ loss from the ligand phosphazides was documented.

Organothorium chemistry has been largely dominated by complexes stabilized by carbocyclic ligands.¹² The development of noncarbocyclic scaffolds has contributed to the diversification of thorium chemistry,^{13–16} though, most ancillary ligands employed with actinide metals are either di-

 Received:
 April 1, 2020

 Published:
 May 26, 2020

or trianionic. As a consequence, thorium(IV) trialkyl species, which necessarily require a single monoanionic supporting ligand, are rare. To the best of our knowledge, aside from tribenzyl variants of cyclopentadienyl $Cp^{R}ThBn_{3}$,^{17,18} the only trialkyl thorium complexes have been reported by Cheng and colleagues.¹⁹ Cheng's complexes, [PhC(NDipp)₂]Th-(CH₂SiMe₃)₃ (Dipp = 2,6-ⁱPr₂C₆H₃)), [Ph₂P(NDipp)₂]Th-(CH₂SiMe₃)₃, [Ph₂P(NDipp)]Th(*p*-CH₂C₆H₄Me)₃, and ^{Me2}TpTh(CH₂SiMe₃)₃ (^{Me2}Tp = B((CH₃)₂C₃N₂H)₃⁻), when combined with 2 equiv of [CPh₃][B(C₆F₅)₄], catalyze the polymerization of isoprene. In general, thorium species bearing noncarbocyclic monoanionic ancillary ligands are uncommon, and they typically contain more than one such ligand.²⁰⁻²⁴

It was hypothesized that the previously reported NNN scaffold, $L_{P=N}$ ($L_{P=N} = \kappa^3 \cdot 2, 5 \cdot [(4 \cdot PrC_6H_4)N=P'Pr_2]_2N \cdot (C_4H_2)^-)$, which features two phosphinimine groups, could be modified to generate a monoanionic diphosphazide ligand. This ligand framework was targeted because it was anticipated to provide access to a wide array of metal phosphazide complexes, thereby shedding light on the viability of phosphazides to serve as useful donors in coordination and organometallic chemistry.

Alkali salts of $HL_{P=N}$ have been previously prepared by reaction of the requisite group I metal hydride with the product of 2 equiv of *para*-isopropylphenyl azide (PippN₃) and 2,5-(ⁱPr₂P)₂NH(C₄H₂) (Scheme 2, left).²⁵ In this work,

however, the pyrrole nitrogen was deprotonated to give $K[2,5-({}^{i}Pr_2P)_2N(C_4H_2)]$ (1) prior to introduction of the azide, as the presence of potassium was deemed necessary to stabilize the resultant phosphazides in $KL_{P=N3}$ (2, $L_{P=N3} = \kappa^5 \cdot 2,5 \cdot [(4\cdot^iPrC_6H_4)N_3=P^iPr_2]_2N(C_4H_2)^-$, Scheme 2).

Diphosphazide 2 exhibits a diagnostic downfield singlet at δ 44.7 in the ³¹P{¹H} NMR spectrum (cf. δ –4.9 for compound 1). A low-quality solid-state structure obtained via X-ray diffraction studies served to establish the atom connectivity within compound 2, confirming two intact phosphazide units (see Supporting Information for additional details). Upon heating a sample of 2 at 55 °C for 24 h in benzene- d_6 , the ³¹P{¹H} NMR spectrum revealed the signal at δ 44.7 had been completely supplanted by an upfield-shifted resonance at δ 22.7, which closely matches that observed for NaL_{P=N}.²⁵ This information suggests the loss of 2 equiv of N₂ from diphosphazide 2 to afford KL_{P=N} (Scheme 2, bottom).

Due to the success of stabilizing two phosphazides in a phosphazidosalen complex of uranium,¹¹ thorium was selected as an appropriate candidate for this system considering their similar ionic radii (1.05 Å for Th(IV) vs 1.00 Å for U(IV), C.N. 8).²⁶ Additionally, the pentadentate, monoanionic ligand L_{PN3} was anticipated to sufficiently sterically saturate the thorium center to provide access to an unusual trialkyl species.

Reaction of ThCl₄(dme)₂ (dme = dimethoxyethane) with 1 equiv of compound 2 in THF at -35 °C yielded an off-white solid which gave rise to a ³¹P{¹H} NMR signal at δ 63.0 (Scheme 3, left). The atom connectivity of thorium

Scheme 3. Synthesis of Compounds 3-6

diphosphazide $L_{P=N3}$ ThCl₃ (3) was revealed by a low-quality solid-state structure. Complex 3 contains three chloride ligands, as well as two phosphazide groups that are bound to the thorium centers in a κ^2 fashion via the α - and γ -nitrogen atoms. Notably, ¹H and ³¹P{¹H} NMR studies indicate that complex 3 is remarkably robust in solution, with no appreciable decomposition or loss of N₂ after 24 h at 55 °C in benzene- d_6 . Such thermal stability lies in stark contrast to $L''UCl_2$, which readily loses 1 equiv of N₂ at ambient temperature and a second equivalent upon heating.¹¹

Addition of 3 equiv of LiCH₂SiMe₃ to thorium trichloride 3 gave rise to a new resonance (δ 59.4) in the ³¹P{¹H} NMR spectrum, along with concomitant disappearance of the resonance attributed to 3 (δ 63.0). The ¹H NMR spectrum exhibited a sharp singlet (δ 0.34, 27H) and a broad resonance (δ 0.15, 6H), consistent with chemical shifts for known organothorium complexes (δ –0.58 to 0.51, SiMe₃; δ –0.43 to 0.50, Th–CH₂)^{19,27} and, hence, indicative of three Th–

Figure 1. Left: X-ray crystal structure of complex 4. Thermal ellipsoids are represented at 50% probability. Hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (deg): Th1–N1 = 2.709(3), Th1–N2 = 2.570(3), Th1–N4 = 2.888(3), Th1–N5 = 2.551(3), Th1–N7 = 2.910(3), Th–C35 = 2.519(4), Th1–C36 = 2.513(4), Th1–C37 = 2.581(4), N2–N3 = 1.350(5), N3–N4 = 1.277(4), N5–N6 = 1.363(4), N6–N7 = 1.268(4), P1–N2 = 1.648(3), P2–N5 = 1.658(3), N2–N3–N4 = 108.9(3), N5–N6–N7 = 109.4(3). Right: X-ray crystal structure of **6**. Thermal ellipsoids are represented at 50% probability. Hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (deg): Th1–N1 = 2.483(4), Th1–N2 = 2.577(3), Th1–N3 = 2.508(3), Th1–C31 = 2.531(4), Th–C35 = 2.509(4), Th1–C36 = 2.477(5), P1–N1 = 1.601(3), P2–N2 = 1.619(3).

CH₂SiMe₃ alkyl groups that are chemically equivalent on the NMR time scale. In addition, the observed CH₂SiMe₃ ¹³C{¹H} NMR resonance (δ 85.4) falls within the range reported (δ 70.7–102.7) for published thorium complexes that bear at least one CH₂SiMe₃ substituent.^{19,27}

The X-ray crystal structure of $L_{P=N3}Th(CH_2SiMe_3)_3$ (4) (Figure 1, left) confirms that both phosphazide groups remain intact with slightly strained N-N-N angles of 108.9(3) and $109.4(3)^{\circ}$ when compared to the average N–N–N angle of metal-free and uncoordinated phosphazides (112.2°). The geometry at thorium is best described as distorted hexagonal bipyramidal with the five coordinated nitrogen atoms and C35 comprising the meridional plane (N7 lies 1.031(4) Å out of the N4-N2-N1-N5-C35 plane) and C36 and C37 occupying the axial sites $(C36-Th-C37: 157.5(1)^{\circ})$. Notably, one of the Th-C bonds (Th1-C37: 2.581(4) Å) is substantially longer than the other two (Th1-C35: 2.519(4) Å, Th1-C36: 2.513(4) Å). Although these distances are among the more elongated of reported Th-CH₂SiMe₃ lengths, they still fall within the range of thorium-alkyl contacts in the chemical literature (2.433(4)-2.598(3) Å).^{19,27} The anionic pyrrole nitrogen-thorium distance (Th-N1 = 2.708(3) Å) is long, which we attribute to the propensity for thorium to sit in the center of the pentadentate ligand binding pocket. The N3-N4 (1.277(4) Å), N6–N7 (1.268(4) Å), P1–N2 (1.648(3) Å), and P2-N5 (1.658(3) Å) distances are consistent with localized double bonds, thus supporting the motif of alternating double (P=N), single (N-N), and double (N= N) bonds in the phosphazide unit. Surprisingly, complex 4 displays significant stability at ambient temperature in solution, with no change observed after 24 h in benzene- d_6 . At 55 °C, however, decomposition into an intractable mixture occurs in 2 h.

Given the relative dearth of chemistry featuring metalcoordinated phosphazides, we aimed to compare the chemistry of related phosphazide and phosphinimine complexes. As pincer ligands have been previously employed to support actinide complexes²⁸ and the pyrrole-based bisphosphinimine analogue $(L_{P=N})$ of $L_{P=N3}$ has been used in conjunction with metals across the periodic table (e.g., Sc, Lu, and Rh),^{25,29} we thereby endeavored to prepare thorium complexes thereof.

Reaction of $NaL_{P=N}$ with $ThCl_4(dme)_2$ in dme afforded $L_{P=N}$ ThCl₃ (5) as an off-white solid in 89.4% yield (Scheme 3, right). The formation of complex 5 was supported by the emergence of a new resonance (δ 56.1), along with simultaneous disappearance of the signal attributed to NaL_{P=N} (δ 28.0) in the ³¹P{¹H} NMR spectrum.²⁵ Notably, the ³¹P NMR chemical shift for bisphosphinimine 5 appears 7.1 ppm upfield of complex 3 (δ 63.0), which matches the empirical trend that phosphazides generally resonate between 7 and 20 ppm downfield of their phosphinimine congeners.¹¹ An X-ray crystal structure of complex $5 \cdot C_7 H_8$ (see Supporting Information for details) revealed the geometry at thorium to be pseudo-octahedral, with a Cl-Th-Cl angle of 174.34(3)°. However, thorium sits slightly outside the typical bonding pocket of the ligand, causing the small N_{phosphinimine}-Th- $N_{phosphinimine}$ angle (135.2(1)°) and long Th- $N_{pyrrole}$ distance (2.474(4) Å; cf. 2.394(4) and 2.378(3) Å for Th- $N_{\text{phosphinimine}}).$ The P=N lengths (1.634(4) Å) are on the long end for coordinated phosphinimines in this ligand system. For example, the P=N bonds in the rhodium complexes $L_{P=N}Rh(CO)$ and $L_{P=N}Rh(CO)_2$ are 1.629(3) and 1.612(2) Å, respectively.²⁵

Upon addition of 3 equiv of LiCH₂SiMe₃ to a toluene solution of complex 5, two new ³¹P NMR resonances (δ 47.7, δ 49.5) of equal intensity, as well as two PⁱPr methine ¹H NMR signals, were observed, suggesting the formation of a *C_s*-symmetric product. Furthermore, 1 equiv of SiMe₄ (¹H NMR: δ 0.00) was generated, and only two Th–CH₂SiMe₃ groups were present. The Th–CH₂ methylene protons appear as two doublets (²*J*_{HH} = 11.5 Hz) due to geminal coupling (confirmed by a 2D ¹H–¹H COSY experiment) and both CH₂SiMe₃ groups are chemically equivalent on the NMR time scale, giving rise to one singlet at δ 0.33 which integrates as 18H.

Examples in the literature which also exhibit geminal Th– CH_2SiMe_3 coupling have ${}^2J_{\rm HH}$ values (10.2 Hz, 12 Hz) that agree well with these findings. 27d,j In the ${}^{13}C{}^{1}H{}$ NMR spectrum, the Th– CH_2SiMe_3 resonance was located at δ 87.3, similar to that of complex 4 (δ 85.4). A diagnostic signal indicative of a cyclometalated Th– $C_{\rm aryl}$ was found at δ 203.5. Altogether, these data strongly imply that the putative organothorium product, $L_{\rm P=N}Th(CH_2SiMe_3)_3$, readily decomposed via cyclometalation of an N-aryl substituent.

The solid-state structure of $L^*_{P=N}Th(CH_2SiMe_3)_2$ (6, $L^*_{P=N} = 2-[(4 \cdot PrC_6H_3)N=P^iPr_2]-5-[(4 \cdot PrC_6H_4)N=P^iPr_2]-N(C_4H_2)^{2-})$, was confirmed by X-ray diffraction studies (Figure 1, right). The six-coordinate thorium(IV) center exhibits pentagonal pyramidal geometry; the two phosphinimine nitrogen donors, the anionic pyrrole nitrogen, the cyclometalated aryl substituent (C31), and one CH₂SiMe₃ group (C35) comprise the pyramid base, whereas the remaining CH₂SiMe₃ (C36) occupies the apical site. Thorium sits 0.581(2) Å above the N1-N2-N3-C31-C35 plane. Notably, the Th-C distances in complex 6 (Th1-C35: 2.509(4) Å, Th1-C36: 2.477(5) Å, Th1-C31: 2.531(4) Å) are similar to those in eight-coordinate trialkyl 4 (2.513(4)-2.581(4) Å).

Although intramolecular C–H activation of $L_{P=N}$ is not common, it appears to be more prevalent for large metals, such as samarium.³⁰ The enhanced thermal stability of diphosphazide 4 relative to complex 6 is likely a consequence of the pentadentate bonding mode of $L_{P=N3}$, which more completely coordinatively and electronically saturates the metal center, thereby mitigating the propensity for cyclometalation. In addition, the phosphazide groups necessarily enforce a larger distance between the *N*-aryl *ortho*-CHs and the metal center.

By a straightforward modification to the synthetic protocol for $L_{P=N}$, a versatile and robust diphosphazide ancillary ligand, $L_{P=N3}$, was prepared. Actinide complexes thereof, which can be generated via standard salt metathesis routes, are resistant to N_2 loss at ambient temperature and display different chemistry than their bisphosphinimine analogues. As the chemistry of this often overlooked functionality continues to be developed, its incorporation into new ligand designs will continue to reveal its under-realized value to the fields of coordination and organometallic chemistry.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.organomet.0c00231.

Experimental and crystallographic details, molecular structures of 2 and 3, atomic coordinates, interatomic distances and angles, anisotropic thermal parameters, and hydrogen parameters for 4, 5, and 6 (PDF)

Accession Codes

CCDC 1973166–1973168 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Paul G. Hayes – Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4; orcid.org/0000-0001-6882-7897; Email: p.hayes@ uleth.ca

Authors

- **Tara K. K. Dickie** Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
- Ashraf A. Aborawi Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.organomet.0c00231

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge the Canada Foundation for Innovation and NSERC of Canada for a Discovery Grant to P.G.H. Mr. Dylan J. Webb is gratefully acknowledged for combustion measurements. Prof. Dr. René T. Boeré and Mr. Connor S. MacNeil are thanked for helpful discussions concerning X-ray crystallography. P.G.H. also thanks the University of Lethbridge for a Tier I Board of Governors Research Chair in Organometallic Chemistry.

REFERENCES

(1) Staudinger, H.; Meyer, J. Über neue organische Phosphorverbindungen III. Phosphinmethylenderivate und Phosphinimine. *Helv. Chim. Acta* **1919**, *2*, 635–645.

(2) (a) Cariou, R.; Dahcheh, F.; Graham, T. W.; Stephan, D. W. Mononuclear and dinuclear palladium and nickel complexes of phosphinimine-based tridentate ligands. *Dalton Trans.* 2011, 40, 4918–4925. (b) Gololobov, Y. G.; Kasukhin, L. F. Recent advances in the staudinger reaction. *Tetrahedron* 1992, 48, 1353–1406. (c) Zamora, M. T.; Zahir, S. M.; Johnson, K. R. D.; Barnson, C. J.; Wheaton, C. A.; Hänninen, M. M.; Hayes, P. G. Synthesis of Sterically Demanding Bis(phosphinimine) Dibenzofuran Ligands and Subsequent Zinc Metalation. *Aust. J. Chem.* 2015, 68, 373–384.

(3) (a) Chan, K. T. K.; Spencer, L. P.; Masuda, J. D.; McCahill, J. S. J.; Wei, P.; Stephan, D. W. Anionic Phosphinimine-Chelate Complexes of Rh and Ir: Steric and Electronic Influences on Oxidative Addition of CH₂Cl₂. *Organometallics* **2004**, *23*, 381–390. (b) Liddle, S. T.; Mills, D. P.; Wooles, A. Early metal bis(phosphorus-stabilised)carbene chemistry. *Chem. Soc. Rev.* **2011**, *40*, 2164–2176. (c) Sun, R.; Wang, H.; Hu, J.; Zhao, J.; Zhang, H. Pyridine-phosphinimine ligand-accelerated Cu(I)-catalyzed azide–alkyne cycloaddition for preparation of 1-(pyridin-2-yl)-1,2,3-triazole derivatives. *Org. Biomol. Chem.* **2014**, *12*, 5954–5963. (d) Wheaton, C. A.; Hayes, P. G. Exploring the versatility of a bis(phosphinimine) pincer ligand: effect of sterics on structure and lactide polymerization activity of cationic zinc complexes. *Catal. Sci. Technol.* **2012**, *2*, 125–138.

(4) Stephan, D. W. The Road to Early-Transition-Metal Phosphinimide Olefin Polymerization Catalysts. *Organometallics* **2005**, *24*, 2548–2560.

(5) Gamer, M. T.; Roesky, P. W.; Palard, I.; Le Hellaye, M.; Guillaume, S. M. In Situ Formation of Bis(phosphinimino)methanide Rare Earth Alkoxide Initiators for the Ring-Opening Polymerization of ε -Caprolactone. *Organometallics* **2007**, *26*, 651–657.

(6) Bebbington, M. W. P.; Bourissou, D. Stabilised phosphazides. Coord. Chem. Rev. 2009, 253, 1248-1261.

(7) (a) Goerlich, J. R.; Farkens, M.; Fischer, A.; Jones, P. G.; Schmutzler, R. Über die Umsetzung von Tris(dimethylamino)phosphin, Triisopropylphosphin und tButyldifluorphosphin mit tertiären Alkylaziden: Phosphazidbildung versus Phosphinimidbildung. Röntgenstrukturen von Triphenylmethylazid und Tris-(dimethylamino)-N-triphenylmethylphosphazid. Z. Anorg. Allg. Chem. 1994, 620, 707–717. (b) Kennedy, R. D. Stabilization of acyclic phosphazides using the ortho-closo-dicarbadodecaboranyl residue. Chem. Commun. 2010, 46, 4782–4784.

(8) (a) Chidester, C. G.; Szmuszkovicz, J.; Duchamp, D. J.; Laurian, L. G.; Freeman, J. P. Reaction of 3-azidopropanol with tris-(dimethylamido)phosphorus and structure of the phosphazide reaction product. *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **1988**, *44*, 1080–1083. (b) Desamparados Velasco, M; Molina, P.; Fresneda, P. M; Sanz, M. A Isolation, Reactivity and Intramolecular Trapping of Phosphazide Intermediates in the Staudinger Reaction of Tertiary Phosphines with Azides. *Tetrahedron* **2000**, *56*, 4079–4084.

(9) (a) Liu, B.; Cui, D. Rare-earth metal complexes stabilized by amino-phosphine ligand. Reaction with mesityl azide and catalysis of the cycloaddition of organic azides and aromatic alkynes. *Dalton Trans.* **2009**, *3*, 550–556. (b) Hillhouse, G. L.; Goeden, G. V.; Haymore, B. L. Stabilization of RN:NN:PR₃. Preparation and structural characterization of stable tetraarylphosphazide complexes containing molybdenum and tungsten. *Inorg. Chem.* **1982**, *21*, 2064–2071. (c) LePichon, L.; Stephan, D. W. Contrasting Formation of a (Phenylthio)phosphinimine and (Phenylthio)phosphazide. Synthesis of Metal Complexes. *Inorg. Chem.* **2001**, *40*, 3827–3829.

(10) Ogawa, T.; Suzuki, T.; Hein, N. M.; Pick, F. S.; Fryzuk, M. D. Cleavage of an aryl carbon-nitrogen bond of a phosphazido iron(II) complex promoted by hydride metathesis. *Dalton Trans.* **2015**, *44*, 54–57.

(11) Dickie, T. K. K.; MacNeil, C. S.; Hayes, P. G. Consecutive N_2 loss from a uranium diphosphazide complex. *Dalton Trans.* **2020**, *49*, 578–582.

(12) Behrle, A. C.; Walensky, J. R. Actinides: Organometallic Chemistry. In *Encyclopedia of Inorganic and Bioinorganic Chemistry*; Scott, R. A., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2014; pp 1–41.

(13) Du, J.; King, D. M.; Chatelain, L.; Lu, E.; Tuna, F.; McInnes, E. J. L.; Wooles, A. J.; Maron, L.; Liddle, S. T. Thorium- and uraniumazide reductions: a transient dithorium-nitride versus isolable diuranium-nitrides. *Chem. Sci.* **2019**, *10*, 3738–3745.

(14) Gregson, M.; Lu, E.; Mills, D. P.; Tuna, F.; McInnes, E. J. K.; Hennig, C.; Scheinost, A. C.; McMaster, J.; Lewis, W.; Blake, A. J.; Kerridge, A.; Liddle, S. T. The inverse-trans-influence in tetravalent lanthanide and actinide bis(carbene) complexes. *Nat. Commun.* **2017**, *8*, 14137–14147.

(15) Cruz, C. A.; Emslie, D. J. H.; Robertson, C. M.; Harrington, L. E.; Jenkins, H. A.; Britten, J. F. Cationic Thorium Alkyl Complexes of Rigid NON- and NNN-Donor Ligands: Arene Coordination as a Persistent Structural Motif. *Organometallics* **2009**, *28*, 1891–1899.

(16) Jantunen, K. C.; Haftbaradaran, F.; Katz, M. J.; Batchelor, R. J.; Schatte, G.; Leznoff, D. B. Synthesis and structure of diamido ether uranium(IV) and thorium(IV) halide "ate" complexes and their conversion to salt-free bis-alkyl complexes. *Dalton Trans.* **2005**, 3083–3091.

(17) Mintz, E. A.; Moloy, K. G.; Marks, T. J.; Day, V. W. Actinide tris(hydrocarbyls). Synthesis, properties, structure, and molecular dynamics of thorium and uranium pentamethylcyclopentadienyltris (eta n-benzyls). *J. Am. Chem. Soc.* **1982**, *104*, 4692–4695.

(18) Chen, R.; Qin, G.; Li, S.; Edwards, A. J.; Piltz, R. O.; Del Rosal, I.; Maron, L.; Cui, D.; Cheng, J. Molecular Thorium Trihydrido Clusters Stabilized by Cyclopentadienyl Ligands. *Angew. Chem., Int. Ed.* **2020**, DOI: 10.1002/anie.202002303.

(19) Qin, G.; Cheng, J. Thorium(IV) trialkyl complexes of noncarbocyclic ligands as highly active isoprene polymerisation catalysts. *Dalton Trans.* **2019**, *48*, 11706–11714. (20) Casellato, U.; Sitran, S.; Tamburini, S.; Vigato, P. A.; Graziani, R. Lanthanide and actinide complexes with bidentate ligands. Crystal structure of dimethylformamidetetrakis(1-oxo-2-thiopyridinato) thorium(IV). *Inorg. Chim. Acta* **1984**, *94*, 69–70.

(21) Monreal, M. J.; Wright, R. J.; Morris, D. E.; Scott, B. L.; Golden, J. T.; Power, P. P.; Kiplinger, J. L. Thorium(IV) and Uranium(IV) Halide Complexes Supported by Bulky β -Diketiminate Ligands. *Organometallics* **2013**, *32*, 1423–1434.

(22) Karmel, I. S. R.; Elkin, T.; Fridman, N.; Eisen, M. S. Dimethylsilyl bis(amidinate)actinide complexes: synthesis and reactivity towards oxygen containing substrates. *Dalton Trans.* **2014**, *43*, 11376–11387.

(23) Camp, C.; Settineri, N.; Lefèvre, J.; Jupp, A. R.; Goicoechea, J. M.; Maron, L.; Arnold, J. Uranium and thorium complexes of the phosphaethynolate ion. *Chem. Sci.* **2015**, *6*, 6379–6384.

(24) Garner, M. E.; Hohloch, S.; Maron, L.; Arnold, J. A New Supporting Ligand in Actinide Chemistry Leads to Reactive Bis(NHC)borate Supported Thorium Complexes. *Organometallics* **2016**, *35*, 2915–2922.

(25) MacNeil, C. S.; Glynn, K. E.; Hayes, P. G. Facile Activation and Deoxygenative Metathesis of CO. *Organometallics* **2018**, 37, 3248–3252.

(26) Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.* 1976, A32, 751–767.

(27) (a) Fagan, P. J.; Manriquez, J. M.; Maatta, E. A.; Seyam, A. M.; Marks, T. J. Synthesis and properties of bis-(pentamethylcyclopentadienyl) actinide hydrocarbyls and hydrides. A new class of highly reactive *f*-element organometallic compounds. J. Am. Chem. Soc. 1981, 103, 6650-6667. (b) Bruno, J. W.; Marks, T. J.; Day, V. W. Actinide-centered cyclometalation chemistry. An unusually distorted thorium bishydrocarbyl: Thp[η^5 -(CH₃)₅C₅]₂CH₂Si(CH₃)₃]₂. J. Organomet. Chem. 1983, 250, 237-246. (c) Fendrick, C. M.; Mintz, E. A.; Schertz, L. D.; Marks, T. J. Manipulation of organoactinide coordinative unsaturation and stereochemistry. Properties of chelating bis-(polymethylcyclopentadienyl) hydrocarbyls and hydrides. Organometallics 1984, 3, 819-821. (d) Butcher, R. J.; Clark, D. L.; Grumbine, S. K.; Scott, B. L.; Watkin, J. G. Mono-(pentamethylcyclopentadienyl)thorium Chemistry: Synthesis, Structural Characterization, and Reactivity of Aryloxide and Alkyl Derivatives. Organometallics 1996, 15, 1488-1496. (e) Clark, D. L.; Grumbine, S. K.; Scott, B. L.; Watkin, J. G. Sterically Demanding Aryloxides as Supporting Ligands in Organoactinide Chemistry. Synthesis, Structural Characterization, and Reactivity of Th(O-2,6-t- $Bu_2C_6H_3)_2(CH_2SiMe_3)_2$ and Formation of the Trimeric Thorium Hydride Th₃H₆(O-2,6-t-Bu₂C₆H₃)₆. Organometallics 1996, 15, 949-957. (f) Jantunen, K. C.; Batchelor, R. J.; Leznoff, D. B. Synthesis, Characterization, and Organometallic Derivatives of Diamidosilyl Ether Thorium(IV) and Uranium(IV) Halide Complexes. Organometallics 2004, 23, 2186-2193. (g) Cruz, C. A.; Emslie, D. J. H.; Harrington, L. E.; Britten, J. F.; Robertson, C. M. Extremely Stable Thorium(IV) Dialkyl Complexes Supported by Rigid Tridentate 4,5-Bis(anilido)xanthene and 2,6-Bis(anilidomethyl)pyridine Ligands. Organometallics 2007, 26, 692-701. (h) Hayes, C. E.; Platel, R. H.; Schafer, L. L.; Leznoff, D. B. Diamido-Ether Actinide Complexes as Catalysts for the Intramolecular Hydroamination of Aminoalkenes. Organometallics 2012, 31, 6732-6740. (i) Hayes, C. E.; Sarazin, Y.; Katz, M. J.; Carpentier, J.-F.; Leznoff, D. B. Diamido-Ether Actinide Complexes as Initiators for Lactide Ring-Opening Polymerization. Organometallics 2013, 32, 1183-1192. (j) Mora, E.; Maria, L.; Biswas, B.; Camp, C.; Santos, I. C.; Pecaut, J.; Cruz, A.; Carretas, J. M.; Marcalo, J.; Mazzanti, M. Diamine Bis(phenolate) as Supporting Ligands in Organoactinide(IV) Chemistry. Synthesis, Structural Characterization, and Reactivity of Stable Dialkyl Derivatives. Organometallics 2013, 32, 1409-1422. (k) Settineri, N. S.; Garner, M. E.; Arnold, J. A Thorium Chalcogenolate Series Generated by Atom Insertion into Thorium-Carbon Bonds. J. Am. Chem. Soc. 2017,

139, 6261–6269. (l) Suvova, M.; O'Brien, K. T. P.; Farnaby, J. H.; Love, J. B.; Kaltsoyannis, N.; Arnold, P. L. Thorium(IV) and Uranium(IV) *trans*-Calix[2]benzene[2]pyrrolide Alkyl and Alkynyl Complexes: Synthesis, Reactivity, and Electronic Structure. Organometallics 2017, 36, 4669–4681. (m) Hohloch, S.; Garner, M. E.; Parker, B. F.; Arnold, J. New supporting ligands in actinide chemistry: tetramethyltetraazaannulene complexes with thorium and uranium. Dalton Trans. 2017, 46, 13768–13782. (n) Andreychuk, N. R.; Dickie, T.; Emslie, D. J. H.; Jenkins, H. A. Thorium(IV) alkyl and allyl complexes of a rigid NON-donor pincer ligand with flanking 1adamantyl substituents. Dalton Trans. 2018, 47, 4866–4876. (o) Settineri, N. S.; Shiau, A. A.; Arnold, J. Dioxygen reacts with metal–carbon bonds in thorium dialkyls to produce bis(alkoxides). Dalton Trans. 2019, 48, 5569–5573.

(28) MacNeil, C. S.; Dickie, T. K. K.; Hayes, P. G. Actinide Pincer Chemistry: A New Frontier. In *Pincer Compounds*, 1st ed.; Morales Morales, D., Ed.; Elsevier: Amsterdam, 2018; Vol. 1, pp 133–172.

(29) Knott, J. P.; Hayes, P. G. Unpublished work.

(30) (a) Johnson, K. R. D.; Kamenz, B. L.; Hayes, P. G. Ligand influence on intramolecular cyclometalation in bis(phosphinimine) rare earth alkyl complexes. *Can. J. Chem.* 2016, 94, 330–341.
(b) Zamora, M. T.; Johnson, K. R.; Hänninen, M. M.; Hayes, P. G. Differences in the cyclometalation reactivity of bisphosphinimine-supported organo-rare earth complexes. *Dalton Trans.* 2014, 43, 10739–10750.