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ABSTRACT: The potassium salt of a new ligand, KLP=N3 (2,
LP=N3 = κ5-2,5-[(4-iPrC6H4)N3PiPr2]2N(C4H2)

−), that features
two units of the rare phosphazide (RN3PR3) functionality was
synthesized via an incomplete Staudinger reaction between K[2,5-
(iPr2P)2N(C4H2)] (1) and 4-iPrC6H4N3. The diphosphazide
ligand was transferred to a thorium(IV) metal center using salt
metathesis strategies, yielding LP=N3ThCl3 (3), which contains two
intact and coordinated phosphazides. Reaction of complex 3 with 3
equiv of LiCH2SiMe3 resulted in formation of the trialkyl thorium
species LP=N3Th(CH2SiMe3)3 (4). In contrast, attempts to
synthesize an organothorium complex supported by the previously
reported bisphosphinimine ligand LP=N (LP=N = κ3-2,5-
[(4-iPrC6H4)NPiPr2]2N(C4H2)

−) afforded the cyclometalated
dialkyl complex L*P=NTh(CH2SiMe3)2 (6, L*PN = κ4-2-[(4-iPrC6H3)NPiPr2]-5-[(4-

iPrC6H4)NPiPr2]N(C4H2)
2−) and 1 equiv

of free tetramethylsilane.

The Staudinger reaction, discovered in 1919,1 introduced
the formation of a phosphinimine group (R3PNR′) via

the reaction of a tertiary phosphine (R3P) with an organic
azide (N3R′), resulting in concomitant loss of N2. Since its
discovery, the phosphinimine functionality has been exten-
sively utilized in coordination chemistry, largely due to the ease
by which the steric and electronic properties can be fine-tuned
by varying the phosphine2 and/or azide3 reactants. Notably,
phosphinimines have been useful for supporting early
transition metal olefin polymerization4 and rare earth metal
ring-opening polymerization catalysts.5

The Staudinger reaction proceeds via an intermediate
phosphazide (R3PNNNR′) (Scheme 1).6 Until recently, such
phosphazides were largely considered transient species, due to

the facile loss of N2, and, accordingly, were overlooked as
viable functional groups in ligand design. Since Staudinger’s
original work, multiple methods have been developed to
stabilize phosphazides and inhibit N2 loss, including the use of
tertiary phosphines and azides with bulky R groups,7 H-
bonding,8 and the coordination of phosphazides to rare-earth9a

and transition metals.6,9b,c,10

It was recently demonstrated that phosphazide coordination
to an alkali metal permits isolation of a “phosphazidosalen”
ligand system.11 Such alkali-metal-stabilized phosphazides
proved sufficiently stable for transfer to uranium via a simple
salt metathesis protocol. More specifically, the dipotassium salt
of the phosphazidosalen ligand K2L″ [L″ = κ6-1,2-{(N3)-
PPh2(2-O−C6H4)}2C6H4] reacted with UCl4 to afford the first
example of an actinide-stabilized phosphazide, L″UCl2. In the
solid-state structure of L″UCl2, both phosphazide function-
alities were coordinated to uranium; consecutive N2 loss from
the ligand phosphazides was documented.
Organothorium chemistry has been largely dominated by

complexes stabilized by carbocyclic ligands.12 The develop-
ment of noncarbocyclic scaffolds has contributed to the
diversification of thorium chemistry,13−16 though, most
ancillary ligands employed with actinide metals are either di-
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Scheme 1. Phosphinimine Formation and Methods of
Phosphazide Stabilization
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or trianionic. As a consequence, thorium(IV) trialkyl species,
which necessarily require a single monoanionic supporting
ligand, are rare. To the best of our knowledge, aside from
tribenzyl variants of cyclopentadienyl CpRThBn3,

17,18 the only
trialkyl thorium complexes have been reported by Cheng and
colleagues.19 Cheng’s complexes, [PhC(NDipp)2]Th-
(CH2SiMe3)3 (Dipp = 2,6-iPr2C6H3)), [Ph2P(NDipp)2]Th-
(CH2SiMe3)3, [Ph2P(NDipp)]Th(p-CH2C6H4Me)3, and
Me2TpTh(CH2SiMe3)3 (Me2Tp = B((CH3)2C3N2H)3

−), when
combined with 2 equiv of [CPh3][B(C6F5)4], catalyze the
polymerization of isoprene. In general, thorium species bearing
noncarbocyclic monoanionic ancillary ligands are uncommon,
and they typically contain more than one such ligand.20−24

It was hypothesized that the previously reported NNN
scaffold, LPN (LPN = κ3-2,5-[(4-iPrC6H4)NPiPr2]2N-
(C4H2)

−), which features two phosphinimine groups, could
be modified to generate a monoanionic diphosphazide ligand.
This ligand framework was targeted because it was anticipated
to provide access to a wide array of metal phosphazide
complexes, thereby shedding light on the viability of
phosphazides to serve as useful donors in coordination and
organometallic chemistry.
Alkali salts of HLPN have been previously prepared by

reaction of the requisite group I metal hydride with the
product of 2 equiv of para-isopropylphenyl azide (PippN3) and
2,5-(iPr2P)2NH(C4H2) (Scheme 2, left).25 In this work,

however, the pyrrole nitrogen was deprotonated to give
K[2,5-(iPr2P)2N(C4H2)] (1) prior to introduction of the azide,
as the presence of potassium was deemed necessary to stabilize
the resultant phosphazides in KLPN3 (2, LPN3 = κ5-2,5-
[(4-iPrC6H4)N3PiPr2]2N(C4H2)

−, Scheme 2).
Diphosphazide 2 exhibits a diagnostic downfield singlet at δ

44.7 in the 31P{1H} NMR spectrum (cf. δ −4.9 for compound
1). A low-quality solid-state structure obtained via X-ray
diffraction studies served to establish the atom connectivity
within compound 2, confirming two intact phosphazide units
(see Supporting Information for additional details). Upon
heating a sample of 2 at 55 °C for 24 h in benzene-d6, the
31P{1H} NMR spectrum revealed the signal at δ 44.7 had been
completely supplanted by an upfield-shifted resonance at δ
22.7, which closely matches that observed for NaLPN.

25 This
information suggests the loss of 2 equiv of N2 from
diphosphazide 2 to afford KLPN (Scheme 2, bottom).

Due to the success of stabilizing two phosphazides in a
phosphazidosalen complex of uranium,11 thorium was selected
as an appropriate candidate for this system considering their
similar ionic radii (1.05 Å for Th(IV) vs 1.00 Å for U(IV),
C.N. 8).26 Additionally, the pentadentate, monoanionic ligand
LPN3 was anticipated to sufficiently sterically saturate the
thorium center to provide access to an unusual trialkyl species.
Reaction of ThCl4(dme)2 (dme = dimethoxyethane) with 1

equiv of compound 2 in THF at −35 °C yielded an off-white
solid which gave rise to a 31P{1H} NMR signal at δ 63.0
(Scheme 3, left). The atom connectivity of thorium

diphosphazide LPN3ThCl3 (3) was revealed by a low-quality
solid-state structure. Complex 3 contains three chloride
ligands, as well as two phosphazide groups that are bound to
the thorium centers in a κ2 fashion via the α- and γ-nitrogen
atoms. Notably, 1H and 31P{1H} NMR studies indicate that
complex 3 is remarkably robust in solution, with no
appreciable decomposition or loss of N2 after 24 h at 55 °C
in benzene-d6. Such thermal stability lies in stark contrast to
L″UCl2, which readily loses 1 equiv of N2 at ambient
temperature and a second equivalent upon heating.11

Addition of 3 equiv of LiCH2SiMe3 to thorium trichloride 3
gave rise to a new resonance (δ 59.4) in the 31P{1H} NMR
spectrum, along with concomitant disappearance of the
resonance attributed to 3 (δ 63.0). The 1H NMR spectrum
exhibited a sharp singlet (δ 0.34, 27H) and a broad resonance
(δ 0.15, 6H), consistent with chemical shifts for known
organothorium complexes (δ −0.58 to 0.51, SiMe3; δ −0.43 to
0.50, Th−CH2)

19,27 and, hence, indicative of three Th−

Scheme 2. Synthesis of Compound 2

Scheme 3. Synthesis of Compounds 3−6
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CH2SiMe3 alkyl groups that are chemically equivalent on the
NMR time scale. In addition, the observed CH2SiMe3

13C{1H}
NMR resonance (δ 85.4) falls within the range reported (δ
70.7−102.7) for published thorium complexes that bear at
least one CH2SiMe3 substituent.

19,27

The X-ray crystal structure of LPN3Th(CH2SiMe3)3 (4)
(Figure 1, left) confirms that both phosphazide groups remain
intact with slightly strained N−N−N angles of 108.9(3) and
109.4(3)° when compared to the average N−N−N angle of
metal-free and uncoordinated phosphazides (112.2°). The
geometry at thorium is best described as distorted hexagonal
bipyramidal with the five coordinated nitrogen atoms and C35
comprising the meridional plane (N7 lies 1.031(4) Å out of
the N4−N2−N1−N5−C35 plane) and C36 and C37
occupying the axial sites (C36−Th−C37: 157.5(1)°). Notably,
one of the Th−C bonds (Th1−C37: 2.581(4) Å) is
substantially longer than the other two (Th1−C35: 2.519(4)
Å, Th1−C36: 2.513(4) Å). Although these distances are
among the more elongated of reported Th−CH2SiMe3 lengths,
they still fall within the range of thorium−alkyl contacts in the
chemical literature (2.433(4)−2.598(3) Å).19,27 The anionic
pyrrole nitrogen−thorium distance (Th−N1 = 2.708(3) Å) is
long, which we attribute to the propensity for thorium to sit in
the center of the pentadentate ligand binding pocket. The N3−
N4 (1.277(4) Å), N6−N7 (1.268(4) Å), P1−N2 (1.648(3)
Å), and P2−N5 (1.658(3) Å) distances are consistent with
localized double bonds, thus supporting the motif of
alternating double (PN), single (N−N), and double (N
N) bonds in the phosphazide unit. Surprisingly, complex 4
displays significant stability at ambient temperature in solution,
with no change observed after 24 h in benzene-d6. At 55 °C,
however, decomposition into an intractable mixture occurs in 2
h.
Given the relative dearth of chemistry featuring metal-

coordinated phosphazides, we aimed to compare the chemistry
of related phosphazide and phosphinimine complexes. As
pincer ligands have been previously employed to support

actinide complexes28 and the pyrrole-based bisphosphinimine
analogue (LPN) of LPN3 has been used in conjunction with
metals across the periodic table (e.g., Sc, Lu, and Rh),25,29 we
thereby endeavored to prepare thorium complexes thereof.
Reaction of NaLPN with ThCl4(dme)2 in dme afforded

LPNThCl3 (5) as an off-white solid in 89.4% yield (Scheme 3,
right). The formation of complex 5 was supported by the
emergence of a new resonance (δ 56.1), along with
simultaneous disappearance of the signal attributed to
NaLPN (δ 28.0) in the 31P{1H} NMR spectrum.25 Notably,
the 31P NMR chemical shift for bisphosphinimine 5 appears
7.1 ppm upfield of complex 3 (δ 63.0), which matches the
empirical trend that phosphazides generally resonate between
7 and 20 ppm downfield of their phosphinimine congeners.11

An X-ray crystal structure of complex 5·C7H8 (see Supporting
Information for details) revealed the geometry at thorium to be
pseudo-octahedral, with a Cl−Th−Cl angle of 174.34(3)°.
However, thorium sits slightly outside the typical bonding
pocket of the ligand, causing the small Nphosphinimine−Th−
Nphosphinimine angle (135.2(1)°) and long Th−Npyrrole distance
(2.474(4) Å; cf. 2.394(4) and 2.378(3) Å for Th−
Nphosphinimine). The PN lengths (1.634(4) Å) are on the
long end for coordinated phosphinimines in this ligand system.
For example, the PN bonds in the rhodium complexes
LPNRh(CO) and LPNRh(CO)2 are 1.629(3) and 1.612(2)
Å, respectively.25

Upon addition of 3 equiv of LiCH2SiMe3 to a toluene
solution of complex 5, two new 31P NMR resonances (δ 47.7,
δ 49.5) of equal intensity, as well as two PiPr methine 1H NMR
signals, were observed, suggesting the formation of a Cs-
symmetric product. Furthermore, 1 equiv of SiMe4 (

1H NMR:
δ 0.00) was generated, and only two Th−CH2SiMe3 groups
were present. The Th−CH2 methylene protons appear as two
doublets (2JHH = 11.5 Hz) due to geminal coupling (confirmed
by a 2D 1H−1H COSY experiment) and both CH2SiMe3
groups are chemically equivalent on the NMR time scale,
giving rise to one singlet at δ 0.33 which integrates as 18H.

Figure 1. Left: X-ray crystal structure of complex 4. Thermal ellipsoids are represented at 50% probability. Hydrogen atoms have been omitted for
clarity. Selected bond distances (Å) and angles (deg): Th1−N1 = 2.709(3), Th1−N2 = 2.570(3), Th1−N4 = 2.888(3), Th1−N5 = 2.551(3),
Th1−N7 = 2.910(3), Th−C35 = 2.519(4), Th1−C36 = 2.513(4), Th1−C37 = 2.581(4), N2−N3 = 1.350(5), N3−N4 = 1.277(4), N5−N6 =
1.363(4), N6−N7 = 1.268(4), P1−N2 = 1.648(3), P2−N5 = 1.658(3), N2−N3−N4 = 108.9(3), N5−N6−N7 = 109.4(3). Right: X-ray crystal
structure of 6. Thermal ellipsoids are represented at 50% probability. Hydrogen atoms have been omitted for clarity. Selected bond distances (Å)
and angles (deg): Th1−N1 = 2.483(4), Th1−N2 = 2.577(3), Th1−N3 = 2.508(3), Th1−C31 = 2.531(4), Th−C35 = 2.509(4), Th1−C36 =
2.477(5), P1−N1 = 1.601(3), P2−N2 = 1.619(3).
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Examples in the literature which also exhibit geminal Th−
CH2SiMe3 coupling have 2JHH values (10.2 Hz, 12 Hz) that
agree well with these findings.27d,j In the 13C{1H} NMR
spectrum, the Th−CH2SiMe3 resonance was located at δ 87.3,
similar to that of complex 4 (δ 85.4). A diagnostic signal
indicative of a cyclometalated Th−Caryl was found at δ 203.5.
Altogether, these data strongly imply that the putative
organothorium product, LPNTh(CH2SiMe3)3, readily decom-
posed via cyclometalation of an N-aryl substituent.
The solid-state structure of L*PNTh(CH2SiMe3)2 (6,

L*PN = 2-[(4-iPrC6H3)NPiPr2]-5-[(4-
iPrC6H4)NPiPr2]-

N(C4H2)
2−), was confirmed by X-ray diffraction studies

(Figure 1, right). The six-coordinate thorium(IV) center
exhibits pentagonal pyramidal geometry; the two phosphini-
mine nitrogen donors, the anionic pyrrole nitrogen, the
cyclometalated aryl substituent (C31), and one CH2SiMe3
group (C35) comprise the pyramid base, whereas the
remaining CH2SiMe3 (C36) occupies the apical site. Thorium
sits 0.581(2) Å above the N1−N2−N3−C31−C35 plane.
Notably, the Th−C distances in complex 6 (Th1−C35:
2.509(4) Å, Th1−C36: 2.477(5) Å, Th1−C31: 2.531(4) Å)
are similar to those in eight-coordinate trialkyl 4 (2.513(4)−
2.581(4) Å).
Although intramolecular C−H activation of LPN is not

common, it appears to be more prevalent for large metals, such
as samarium.30 The enhanced thermal stability of diphospha-
zide 4 relative to complex 6 is likely a consequence of the
pentadentate bonding mode of LPN3, which more completely
coordinatively and electronically saturates the metal center,
thereby mitigating the propensity for cyclometalation. In
addition, the phosphazide groups necessarily enforce a larger
distance between the N-aryl ortho-CHs and the metal center.
By a straightforward modification to the synthetic protocol

for LPN, a versatile and robust diphosphazide ancillary ligand,
LPN3, was prepared. Actinide complexes thereof, which can be
generated via standard salt metathesis routes, are resistant to
N2 loss at ambient temperature and display different chemistry
than their bisphosphinimine analogues. As the chemistry of
this often overlooked functionality continues to be developed,
its incorporation into new ligand designs will continue to
reveal its under-realized value to the fields of coordination and
organometallic chemistry.
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